LS3: Latent Space Safe Sets for Long-Horizon Visuomotor Control of Sparse Reward Iterative TasksDownload PDF

Published: 13 Sept 2021, Last Modified: 05 May 2023CoRL2021 PosterReaders: Everyone
Keywords: Reinforcement Learning, Imitation Learning, Safety
Abstract: Reinforcement learning (RL) has shown impressive success in exploring high-dimensional environments to learn complex tasks, but can often exhibit unsafe behaviors and require extensive environment interaction when exploration is unconstrained. A promising strategy for learning in dynamically uncertain environments is requiring that the agent can robustly return to learned Safe Sets, where task success (and therefore safety) can be guaranteed. While this approach has been successful in low-dimensions, enforcing this constraint in environments with visual observation spaces is exceedingly challenging. We present a novel continuous representation for Safe Sets framed as a binary classification problem in a learned latent space, which flexibly scales to high-dimensional image observations. We then present a new algorithm, Latent Space Safe Sets (LS3), which uses this representation for long-horizon control. We evaluate LS3 on 4 domains, including a challenging sequential pushing task in simulation and a physical cable routing task. We find that LS3 can use prior task successes to restrict exploration and learn more efficiently than prior algorithms while satisfying constraints. See for supplementary material.
Supplementary Material: zip
Poster: png
18 Replies