Local-Global Coupling Spiking Graph Transformer for Brain Disorders Diagnosis from Two Perspectives

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY-SA 4.0
Keywords: Spiking neural networks, brain-inspired computational model
TL;DR: A novel local-global coupling spiking graph transformer, enabling dual-perspective analysis for improved brain disorder diagnosis and interpretable biomarker discovery.
Abstract: Brain disorders have been consistently associated with abnormalities in specific brain regions or neural circuits. Identifying key brain regional activities and functional connectivity patterns is essential for discovering more precise neurobiological biomarkers. However, previous studies have primarily emphasized alterations in functional connectivity while overlooking abnormal neuronal population activity within brain regions. To bridge this gap, we propose a novel Local-Global Coupling Spiking Graph Transformer (LGC-SGT) that jointly models both inter-regional connectivity differences and deviations in neuronal population firing rates within brain regions, enabling a dual-perspective neuropathological analysis. The global pathway leverages spike-based computation in LGC-SGT to model biologically plausible aberrant neural firing dynamics, while the local pathway adaptively captures abnormal graph-based representations of brain connectivity learned by local plasticity in the liquid state machine module. Furthermore, we design a shortcut-enhanced output strategy in LGC-SGT with the hybrid loss function to suppress outlier interference caused by inter-individual and inter-center variability, enabling a more robust decision boundary. Extensive experiments on three brain disorder datasets demonstrate that our model consistently outperforms state-of-the-art graph methods in brain disorder diagnosis. Moreover, it facilitates the extraction of interpretable neurobiological biomarkers by jointly analyzing regional neural activity and functional connectivity, offering a more comprehensive framework for brain disorder understanding and diagnosis.
Primary Area: Neuroscience and cognitive science (e.g., neural coding, brain-computer interfaces)
Submission Number: 10568
Loading