Abstract: Multi-objective preference alignment in language models often encounters a challenging trade-off: optimizing for one human preference (e.g., helpfulness) frequently compromises others (e.g., harmlessness) due to the inherent conflicts between competing objectives. While prior work mainly focuses on algorithmic solutions, we explore a novel data-driven approach to uncover the types of data that can effectively mitigate these conflicts. Specifically, we propose the concept of \textsc{Reward Consistency (RC)}, which identifies samples that align with multiple preference objectives, thereby reducing conflicts during training. Through gradient-based analysis, we demonstrate that RC-compliant samples inherently constrain performance degradation during multi-objective optimization. Building on these insights, we further develop \textsc{Reward Consistency Sampling}, a framework that automatically constructs preference datasets that effectively mitigate conflicts during multi-objective alignment. Our generated data achieves an average improvement of 13.37% in both the harmless rate and helpfulness win rate when optimizing harmlessness and helpfulness, and can consistently resolve conflicts in varying multi-objective scenarios.
Loading