WANT TO TRAIN KANS AT SCALE? NOW UKAN!

ICLR 2026 Conference Submission19643 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: GPU, Kolmogorov–Arnold, KAN, Unbounded-KAN, B-spline
TL;DR: Scale B-spline KANs on GPU and unbound them.
Abstract: Kolmogorov–Arnold Networks (KANs) have recently emerged as a powerful alternative to traditional multilayer perceptrons. However, their reliance on predefined, bounded grids restricts their ability to approximate functions on unbounded domains. To address this, we present Unbounded Kolmogorov–Arnold Networks (UKANs), a method that removes the need for bounded grids in traditional Kolmogorov–Arnold Networks (KANs). The key innovation of this method is a coefficient-generator (CG) model that produces, on the fly, only the B-spline coefficients required locally on an unbounded symmetric grid. UKANs couple multilayer perceptrons with KANs by feeding positional encoding of grid groups into the CG model, enabling function approximation on unbounded domains without requiring data normalization. To reduce the computational cost of both UKANs and KANs, we introduce a GPU-accelerated library that lowers B-spline evaluation complexity by a factor proportional to the grid size, enabling large-scale learning by leveraging efficient memory management, in line with recent software advances such as FlashAttention and FlashFFTConv. Performance benchmarking confirms the superior memory and computational efficiency of our accelerated KAN (warpKAN), and UKANs, showing a $3-30\times$ speed-up and up to $1000\times$ memory reduction compared to vanilla KANs. Experiments on regression, classification, and generative tasks demonstrate the effectiveness of UKANs to match or surpass KAN accuracy. Finally, we use both accelerated KAN and UKAN in a molecular property prediction task, establishing the feasibility of large-scale end-to-end training with our optimized implementation.
Primary Area: infrastructure, software libraries, hardware, systems, etc.
Submission Number: 19643
Loading