Modeling content creator incentives on algorithm-curated platformsDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 notable top 5%Readers: Everyone
Keywords: Nash equilibria, producer incentives, attention monetizing platforms, recommenders, differentiable games, exposure game
TL;DR: Algorithmic choices in modern recommenders may have significant and unexpected effects on content creator incentives.
Abstract: Content creators compete for user attention. Their reach crucially depends on algorithmic choices made by developers on online platforms. To maximize exposure, many creators adapt strategically, as evidenced by examples like the sprawling search engine optimization industry. This begets competition for the finite user attention pool. We formalize these dynamics in what we call an exposure game, a model of incentives induced by modern algorithms including factorization and (deep) two-tower architectures. We prove that seemingly innocuous algorithmic choices—e.g., non-negative vs. unconstrained factorization—significantly affect the existence and character of (Nash) equilibria in exposure games. We proffer use of creator behavior models like ours for an (ex-ante) pre-deployment audit. Such an audit can identify misalignment between desirable and incentivized content, and thus complement post-hoc measures like content filtering and moderation. To this end, we propose tools for numerically finding equilibria in exposure games, and illustrate results of an audit on the MovieLens and LastFM datasets. Among else, we find that the strategically produced content exhibits strong dependence between algorithmic exploration and content diversity, and between model expressivity and bias towards gender-based user and creator groups.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
Supplementary Material: zip
10 Replies