Can we get the best of both Binary Neural Networks and Spiking Neural Networks for Efficient Computer Vision?

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: BNN, Hoyer regularizer, gradient descent, FLOPs, object detection
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We present a novel training framework for sparse binary activation neural networks (BANN) that achieves the state-of-the-art in the trade-off between performance and compute efficiency.
Abstract: Binary Neural networks (BNN) have emerged as an attractive computing paradigm for a wide range of low-power vision tasks. However, state-of-the-art (SOTA) BNNs do not yield any sparsity, and induce a significant number of non-binary operations. On the other hand, activation sparsity can be provided by spiking neural networks (SNN), that too have gained significant traction in recent times. Thanks to this sparsity, SNNs when implemented on neuromorphic hardware, have the potential to be significantly more power-efficient compared to traditional artifical neural networks (ANN). However, SNNs incur multiple time steps to achieve close to SOTA accuracy. Ironically, this increases latency and energy---costs that SNNs were proposed to reduce---and presents itself as a major hurdle in realizing SNNs’ theoretical gains in practice. This raises an intriguing question: *Can we obtain SNN-like sparsity and BNN-like accuracy and enjoy the energy-efficiency benefits of both?* To answer this question, in this paper, we present a training framework for sparse binary activation neural networks (BANN) using a novel variant of the Hoyer regularizer. We estimate the threshold of each BANN layer as the Hoyer extremum of a clipped version of its activation map, where the clipping value is trained using gradient descent with our Hoyer regularizer. This approach shifts the activation values away from the threshold, thereby mitigating the effect of noise that can otherwise degrade the BANN accuracy. Our approach outperforms existing BNNs, SNNs, and adder neural networks (that also avoid energy-expensive multiplication operations similar to BNNs and SNNs) in terms of the accuracy-FLOPs trade-off for complex image recognition tasks. Downstream experiments on object detection further demonstrate the efficacy of our approach. Lastly, we demonstrate the portability of our approach to SNNs with multiple time steps. Codes are publicly available [here](https://github.com/godatta/Ultra-Low-Latency-SNN).
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: general machine learning (i.e., none of the above)
Submission Number: 5872
Loading