Abstract: Large language models (LLMs) have shown significant achievements in solving a wide range of tasks. Recently, LLMs' capability to store, retrieve and infer with symbolic knowledge has drawn a great deal of attention, showing their potential to understand structured information. However, it is not yet known whether LLMs can understand Description Logic (DL) ontologies. In this work, we empirically analyze the LLMs' capability of understanding DL-Lite ontologies covering 6 representative tasks from syntactic and semantic aspects. With extensive experiments, we demonstrate both the effectiveness and limitations of LLMs in understanding DL-Lite ontologies. We find that LLMs can understand formal syntax and model-theoretic semantics of concepts and roles. However, LLMs struggle with understanding TBox NI transitivity and handling ontologies with large ABoxes. We hope that our experiments and analyses provide more insights into LLMs and inspire to build more faithful knowledge engineering solutions.
Paper Type: Long
Research Area: NLP Applications
Research Area Keywords: knowledge graphs, mathematical NLP, evaluation
Contribution Types: Data resources, Data analysis
Languages Studied: description logic, natural language
Submission Number: 4715
Loading