Read to Hear: a Zero-Shot Pronunciation Assessment using Textual Descriptions and LLMs

ACL ARR 2025 May Submission446 Authors

12 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Automatic pronunciation assessment is typically performed by acoustic models trained on audio-score pairs. Although effective, these systems provide only numerical scores, without the information needed to help learners understand their errors. Meanwhile, large language models (LLMs) have proven effective in supporting language learning, but their potential for assessing pronunciation remains unexplored. In this work, we introduce TextPA, a zero-shot, Textual description-based Pronunciation Assessment approach. TextPA utilizes human-readable representations of speech signals, which are fed into an LLM to assess pronunciation accuracy and fluency, while also providing reasoning behind the assigned scores. Finally, a phoneme sequence match scoring method is used to refine the accuracy scores. Our work highlights a previously overlooked direction for pronunciation assessment. Instead of relying on supervised training with audio-score examples, we exploit the rich pronunciation knowledge embedded in written text. Experimental results show that our approach is both cost-efficient and competitive in performance. Furthermore, TextPA significantly improves the performance of conventional audio-score-trained models on out-of-domain data by offering a complementary perspective.
Paper Type: Long
Research Area: NLP Applications
Research Area Keywords: educational applications, multimodal applications
Contribution Types: NLP engineering experiment
Languages Studied: English
Submission Number: 446
Loading