Keywords: data valuation, data subset selection, top-m arms identification
TL;DR: We propose an efficient top-m data values identification algorithm with both theoretical results and empirical efficiency
Abstract: Data valuation has found many real-world applications, e.g., data pricing and data selection. However, the most adopted approach -- Shapley value (SV) -- is computationally expensive due to the large number of model trainings required. Fortunately, most applications (e.g., data selection) require only knowing the $m$ data points with the highest data values (i.e., top-$m$ data values), which implies the potential for fewer model trainings as exact data values are not required. Existing work formulates top-$m$ Shapley value identification as top-$m$ arms identification in multi-armed bandits (MAB). However, the proposed approach falls short because it does not utilize data features to predict data values, a method that has been shown empirically to be effective. A recent top-$m$ arms identification work does consider the use of arm features while assuming a linear relationship between arm features and rewards, which is often not satisfied in data valuation. To this end, we propose the GPGapE algorithm that uses the Gaussian process to model the \emph{non-linear} mapping from data features to data values, removing the linear assumption. We theoretically analyze the correctness and stopping iteration of GPGapE in finding an $(\epsilon, \delta)$-approximation to the top-$m$ data values. We further improve the computational efficiency, by calculating data values using small data subsets to reduce the computation cost of model trainings. We empirically demonstrate that GPGapE outperforms other baselines in top-$m$ data values identification, noisy data detection, and data subset selection on real-world datasets.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12845
Loading