Keywords: Zero shot audio classifiers, Posthoc explanations
TL;DR: We propose a posthoc explanation method for zero shot audio classifiers.
Abstract: Interpreting the decisions of deep learning models, including audio classifiers, is crucial for ensuring the transparency and trustworthiness of this technology. In this paper, we introduce LMAC-ZS (Listenable Maps for Zero-Shot Audio Classifiers), which, to the best of our knowledge, is the first decoder-based post-hoc explanation method for explaining the decisions of zero-shot audio classifiers. The proposed method utilizes a novel loss function that aims to closely reproduce the original similarity patterns between text-and-audio pairs in the generated explanations. We provide an extensive evaluation using the Contrastive Language-Audio Pretraining (CLAP) model to showcase that our interpreter remains faithful to the decisions in a zero-shot classification context. Moreover, we qualitatively show that our method produces meaningful explanations that correlate well with different text prompts.
Primary Area: Interpretability and explainability
Submission Number: 10433
Loading