Normality Guided Multiple Instance Learning for Weakly Supervised Video Anomaly Detection

Published: 05 Jan 2023, Last Modified: 07 Mar 2025Proceedings of the IEEE/CVF Winter Conference on Applications of Computer VisionEveryoneCC BY 4.0
Abstract: Weakly supervised Video Anomaly Detection (wVAD) aims to distinguish anomalies from normal events based on video-level supervision. Most existing works utilize Multiple Instance Learning (MIL) with ranking loss to tackle this task. These methods, however, rely on noisy predictions from a MIL-based classifier for target instance selection in ranking loss, degrading model performance. To overcome this problem, we propose Normality Guided Multiple Instance Learning (NG-MIL) framework, which encodes diverse normal patterns from noise-free normal videos into prototypes for constructing a similarity-based classifier. By ensembling predictions of two classifiers, our method could refine the anomaly scores, reducing training instability from weak labels. Moreover, we introduce normality clustering and normality guided triplet loss constraining inner bag instances to boost the effect of NG-MIL and increase the discriminability of classifiers. Extensive experiments on three public datasets (ShanghaiTech, UCF-Crime, XD-Violence) demonstrate that our method is comparable to or better than existing weakly supervised methods, achieving state-of-the-art results.
Loading