Byzantine-Robust Federated Learning with Learnable Aggregation Weights

ICLR 2026 Conference Submission20298 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Federated Learning, Byzantine Robustness, Distributed Optimization
TL;DR: We propose a Byzantine-robust federated learning method that jointly learns aggregation weights and model parameters, outperforming existing methods under heterogeneous data and strong attacks.
Abstract: Federated Learning (FL) enables clients to collaboratively train a global model without sharing their private data. However, the presence of malicious (Byzantine) clients poses significant challenges to the robustness of FL, particularly when data distributions across clients are heterogeneous. In this paper, we propose a novel Byzantine-robust FL optimization problem that incorporates adaptive weighting into the aggregation process. Unlike conventional approaches, our formulation treats aggregation weights as learnable parameters, jointly optimizing them alongside the global model parameters. To solve this optimization problem, we develop an alternating minimization algorithm with strong convergence guarantees under adversarial attack. We analyze the Byzantine resilience of the proposed objective. We evaluate the performance of our algorithm against state-of-the-art Byzantine-robust FL approaches across various datasets and attack scenarios. Experimental results demonstrate that our method consistently outperforms existing approaches, particularly in settings with highly heterogeneous data and a large proportion of malicious clients.
Supplementary Material: zip
Primary Area: optimization
Submission Number: 20298
Loading