Training Tensor Attention Efficiently: From Cubic to Almost Linear Time

ICLR 2026 Conference Submission14672 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Attention, Tensor Attention, Transformers, LLM
Abstract: Tensor Attention, a multi-view attention that is able to capture high-order correlations among multiple modalities, can overcome the representational limitations of classical matrix attention. However, the $O(n^3)$ time complexity of tensor attention poses a significant obstacle to its utilization in transformers, where $n$ is the input sequence length. In this work, we prove that the backward gradient of tensor attention training can be computed in almost linear time $n^{1+o(1)}$, the same complexity as its forward computation under the bounded entries assumption. We provide a closed-form solution for the gradient and propose a fast computation method utilizing polynomial approximation methods and tensor algebraic techniques. Furthermore, we prove the necessity and tightness of our assumption through hardness analysis, showing that slightly weakening it renders the gradient problem unsolvable in truly subcubic time. Our theoretical results establish the feasibility of efficient higher-order transformer training and may facilitate practical applications of tensor attention architectures.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 14672
Loading