EDML for Learning Parameters in Directed and Undirected Graphical Models

Khaled S. Refaat, Arthur Choi, Adnan Darwiche

Apr 21, 2013 (modified: Apr 21, 2013) ICML 2013 Inferning submission readers: everyone
  • Decision: conferencePoster
  • Abstract: EDML is a recently proposed algorithm for learning parameters in Bayesian networks. It was originally derived in terms of approximate inference on a meta-network which underlies the Bayesian approach to parameter estimation. While this initial derivation helped discover EDML in the first place and provided a concrete context for identifying some of its properties (e.g., in contrast to EM), the formal setting was somewhat tedious in the number of concepts it drew on. In this paper, we propose a greatly simplified perspective on EDML which casts it as a general approach to continuous optimization. The new perspective has several advantages. First, it makes immediate some results that were non-trivial to prove initially. Second, it facilitates the design of EDML algorithms for new graphical models, leading to a new algorithm for learning parameters in Markov networks. We derive this algorithm in this paper, and provide an empirical comparison with a commonly used gradient method, showing that EDML can find better estimates several times faster.