This Looks Like It Rather Than That: ProtoKNN For Similarity-Based ClassifiersDownload PDF

Published: 01 Feb 2023, Last Modified: 28 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: XAI, Inherently Interpretable Model, This Looks Like That Framework, Fine-grained Image Classification, Deep Learning
Abstract: Among research on the interpretability of deep learning models, the 'this looks like that' framework with ProtoPNet has attracted significant attention. By combining the strong power of deep learning models with the interpretability of case-based inference, ProtoPNet can achieve high accuracy while keeping its reasoning process interpretable. Many methods based on ProtoPNet have emerged to take advantage of this benefit, but despite their practical usefulness, they run into difficulty when utilizing similarity-based classifiers, e.g., in domains where unknown class samples exist. This is because ProtoPNet and its variants adopt the training process specific to linear classifiers, which allows the prototypes to represent useful image features for class recognition. Due to this difficulty, the effectiveness of similarity-based classifiers (e.g., k-nearest neighbor (KNN)) on the 'this looks like that' framework have not been sufficiently examined. To alleviate this problem, we propose ProtoKNN, an extension of ProtoPNet that adopts KNN classifiers. Extensive experiments on multiple open datasets demonstrate that the proposed method can achieve competitive results with a state-of-the-art method.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
5 Replies