Keywords: weak-to-strong generalization, feature learning
TL;DR: We theoretically investigate weak-to-strong generalization from a linear CNN to a two-layer ReLU CNN
Abstract: Weak-to-strong generalization refers to the phenomenon where a stronger model trained under supervision from a weaker one can outperform its teacher. While prior studies aim to explain this effect, most theoretical insights are limited to abstract frameworks or linear/random feature models. In this paper, we provide a formal analysis of weak-to-strong generalization from a linear CNN (weak) to a two-layer ReLU CNN (strong). We consider structured data composed of label-dependent signals of varying difficulty and label-independent noise, and analyze gradient descent dynamics when the strong model is trained on data labeled by the pretrained weak model. Our analysis identifies two regimes—data-scarce and data-abundant—based on the signal-to-noise characteristics of the dataset, and reveals distinct mechanisms of weak-to-strong generalization. In the data-scarce regime, generalization occurs via benign overfitting or fails via harmful overfitting, depending on the amount of data, and we characterize the transition boundary. In the data-abundant regime, generalization emerges in the early phase through label correction, but we observe that overtraining can subsequently degrade performance.
Student Paper: Yes
Submission Number: 73
Loading