On the Long Range Abilities of Transformers

24 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Transformers, Long Range, LRA Benchmark
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Improving and analyzing the long-range abilities of transformers.
Abstract: Despite their dominance in modern DL and, especially, NLP domains, transformer architectures exhibit sub-optimal performance on long-range tasks compared to recent layers that are specifically designed for this purpose. In this work, drawing inspiration from key attributes of long-range layers, such as state-space layers, linear RNN layers, and global convolution layers, we demonstrate that minimal mod- ifications to the transformer architecture can significantly enhance performance on the Long Range Arena (LRA) benchmark, thus narrowing the gap with these specialized layers. We identify that two key principles for long-range tasks are (i) incorporating an inductive bias towards smoothness, and (ii) locality. As we show, integrating these ideas into the attention mechanism improves results with a negligible amount of additional computation and without any additional trainable parameters. Our experiments also shed light on the reasons for the inferior performance of transformers on long-range tasks and identify critical properties that are essential for successfully capturing long-range dependencies. Our code is attached as supplementary.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9164
Loading