Shift Before You Learn: Enabling Low-Rank Representations in Reinforcement Learning

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Low-rank representation, RL, successor measure, local mixing
TL;DR: The paper studies the estimation of successor measures in RL and low-rank assumptions
Abstract: Low-rank structure is a common implicit assumption in many modern reinforcement learning (RL) algorithms. For instance, reward-free and goal-conditioned RL methods often presume that the successor measure admits a low-rank representation. In this work, we challenge this assumption by first remarking that the successor measure itself is not approximately low-rank. Instead, we demonstrate that a low-rank structure naturally emerges in the shifted successor measure, which captures the system dynamics after bypassing a few initial transitions. We provide finite-sample performance guarantees for the entry-wise estimation of a low-rank approximation of the shifted successor measure from sampled entries. Our analysis reveals that both the approximation and estimation errors are primarily governed by a newly introduced quantitity: the spectral recoverability of the corresponding matrix. To bound this parameter, we derive a new class of functional inequalities for Markov chains that we call Type II Poincaré inequalities and from which we can quantify the amount of shift needed for effective low-rank approximation and estimation. This analysis shows in particular that the required shift depends on decay of the high-order singular values of the shifted successor measure and is hence typically small in practice. Additionally, we establish a connection between the necessary shift and the local mixing properties of the underlying dynamical system, which provides a natural way of selecting the shift. Finally, we validate our theoretical findings with experiments, and demonstrate that shifting the successor measure indeed leads to improved performance in goal-conditioned RL.
Supplementary Material: zip
Primary Area: Reinforcement learning (e.g., decision and control, planning, hierarchical RL, robotics)
Submission Number: 13177
Loading