Optimal Activation Functions for the Random Features Regression ModelDownload PDF

Published: 01 Feb 2023, Last Modified: 12 Mar 2024ICLR 2023 posterReaders: Everyone
Keywords: Random Features Regression Model, Learning theory for neural networks, Functional analysis and variational calculus
Abstract: The asymptotic mean squared test error and sensitivity of the Random Features Regression model (RFR) have been recently studied. We build on this work and identify in closed-form the family of Activation Functions (AFs) that minimize a combination of the test error and sensitivity of the RFR under different notions of functional parsimony. We find scenarios under which the optimal AFs are linear, saturated linear functions, or expressible in terms of Hermite polynomials. Finally, we show how using optimal AFs impacts well established properties of the RFR model, such as its double descent curve, and the dependency of its optimal regularization parameter on the observation noise level.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2206.01332/code)
48 Replies