CAT-3DGS: A Context-Adaptive Triplane Approach to Rate-Distortion-Optimized 3DGS Compression

Published: 22 Jan 2025, Last Modified: 07 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: 3D Gaussian Splatting, Rate-Distortion Optimization, Context Models, Grid Representations
Abstract: 3D Gaussian Splatting (3DGS) has recently emerged as a promising 3D representation. Much research has been focused on reducing its storage requirements and memory footprint. However, the needs to compress and transmit the 3DGS representation to the remote side are overlooked. This new application calls for rate-distortion-optimized 3DGS compression. How to quantize and entropy encode sparse Gaussian primitives in the 3D space remains largely unexplored. Few early attempts resort to the hyperprior framework from learned image compression. But, they fail to utilize fully the inter and intra correlation inherent in Gaussian primitives. Built on ScaffoldGS, this work, termed CAT-3DGS, introduces a context-adaptive triplane approach to their rate-distortion-optimized coding. It features multi-scale triplanes, oriented according to the principal axes of Gaussian primitives in the 3D space, to capture their inter correlation (i.e. spatial correlation) for spatial autoregressive coding in the projected 2D planes. With these triplanes serving as the hyperprior, we further perform channel-wise autoregressive coding to leverage the intra correlation within each individual Gaussian primitive. Our CAT-3DGS incorporates a view frequency-aware masking mechanism. It actively skips from coding those Gaussian primitives that potentially have little impact on the rendering quality. When trained end-to-end to strike a good rate-distortion trade-off, our CAT-3DGS achieves the state-of-the-art compression performance on the commonly used real-world datasets.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6988
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview