Latent Space Simulator for Unveiling Molecular Free Energy Landscapes and Predicting Transition Dynamics

23 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: molecular dynamics, simulation, Boltzmann distribution, sampling
TL;DR: next state predictor that models molecular dynamics trajectories in a latent space
Abstract: Free Energy Surfaces (FES) and metastable transition rates are key elements in understanding the behavior of molecules within a system. However, the typical approaches require computing force fields across billions of time steps in a molecular dynamics (MD) simulation, which is often considered intractable when dealing with large systems or databases. In this work, we propose LaMoDy, a latent-space MD simulator, to effectively tackle the intractability with around 20-fold speed improvements compared to classical MD. The model leverages a chirality-aware SE(3)-invariant encoder-decoder architecture to generate a latent space coupled with a recurrent neural network to run the time-wise dynamics. We show that LaMoDy effectively recovers realistic trajectories and FES more accurately and faster than existing methods while capturing their major dynamical and conformational properties. Furthermore, the proposed approach can generalize to molecules outside the training distribution.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8477
Loading