Abstract: Recent advancements in large language models (LLMs) underscore the need for stronger reasoning capabilities to solve complex problems effectively. While Chain-of-Thought (CoT) reasoning has been a step forward, it remains insufficient for many domains. A promising alternative is explicit high-level plan generation, but existing approaches largely assume that LLMs can produce effective plans through few-shot prompting alone, without additional training. In this work, we challenge this assumption and introduce CRISP (Complex Reasoning with Interpretable Step-based Plans), a multi-domain dataset of high-level plans for mathematical reasoning and code generation. The plans in CRISP are automatically generated and rigorously validated—both intrinsically, using an LLM as a judge, and extrinsically, by evaluating their impact on downstream task performance. We demonstrate that fine-tuning a small model on CRISP enables it to generate higher-quality plans than much larger models using few-shot prompting, while significantly outperforming Chain-of-Thought reasoning. Furthermore, our out-of-domain evaluation reveals that fine-tuning on one domain improves plan generation in the other, highlighting the generalizability of learned planning capabilities.
Paper Type: Long
Research Area: Resources and Evaluation
Research Area Keywords: Planning;
Contribution Types: Model analysis & interpretability, Data resources
Languages Studied: English
Submission Number: 7971
Loading