SCLA: Automated Smart Contract Summarization via LLMs and Control Flow Prompt

ACL ARR 2025 May Submission1803 Authors

18 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Smart contract code summarization is crucial for efficient maintenance and vulnerability mitigation. While many studies use Large Language Models (LLMs) for summarization, their performance still falls short compared to fine-tuned models like CodeT5+ and CodeBERT. Some approaches combine LLMs with data flow analysis but fail to fully capture the hierarchy and control structures of the code, leading to information loss and degraded summarization quality. We propose SCLA, a multimodal LLMs-based method that enhances summarization by integrating a Function Call Graph (FCG) and semantic facts from the code’s control flow into a semantically enriched prompt. SCLA uses a control flow extraction algorithm to derive control flows from semantic nodes in the Abstract Syntax Tree (AST) and constructs the corresponding FCG. Code semantic facts refer to both explicit and implicit information within the AST that is relevant to smart contracts. This method enables LLMs to better capture the structural and contextual dependencies of the code. We validate the effectiveness of SCLA through comprehensive experiments on a dataset of 40,000 real-world smart contracts. The experiment shows that SCLA significantly improves summarization quality, outperforming the SOTA baselines with improvements of 26.7%, 23.2%, 16.7%, and 14.7% in BLEU-4, METEOR, ROUGE-L, and BLEURT scores, respectively.
Paper Type: Long
Research Area: Summarization
Research Area Keywords: NLP Applications, Summarization
Contribution Types: NLP engineering experiment, Publicly available software and/or pre-trained models, Data resources, Data analysis
Languages Studied: English,Chinese
Submission Number: 1803
Loading