Keywords: image classification, denoising, diffusion models, energy-based models
TL;DR: We propose a joint energy-based approach which unifies image classification and denoising.
Abstract: Image classification and denoising suffer from complementary issues of lack of robustness or partially ignoring conditioning information. We argue that they can be alleviated by unifying both tasks through a model of the joint probability of (noisy) images and class labels. Classification is performed with a forward pass followed by conditioning. Using the Tweedie-Miyasawa formula, we evaluate the denoising function with the score, which can be computed by marginalization and back-propagation. The training objective is then a combination of cross-entropy loss and denoising score matching loss integrated over noise levels. Numerical experiments on CIFAR-10 and ImageNet show competitive classification and denoising performance compared to reference deep convolutional classifiers/denoisers, and significantly improves efficiency compared to previous joint approaches. Our model shows an increased robustness to adversarial perturbations compared to a standard discriminative classifier, and allows for a novel interpretation of adversarial gradients as a difference of denoisers.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13308
Loading