Conditional density estimation for video prediction with score-based models

ICLR 2025 Conference Submission13131 Authors

28 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: temporal prediction, diffusion models, denoising, conditioning, occlusion boundaries, cue combination
TL;DR: Probabilistic video prediction with conditional denoiser networks relies on representations that automatically adapt to the signal.
Abstract: Temporal prediction is inherently uncertain, but representing the ambiguity in natural image sequences is a challenging high-dimensional probabilistic inference problem. For natural scenes, the curse of dimensionality renders explicit density estimation statistically and computationally intractable. Here, we describe an implicit regression-based framework for learning and sampling the conditional density of the next frame in a video given previous observed frames. We show that sequence-to-image deep networks trained on a simple resilience-to-noise objective function extract adaptive representations for temporal prediction. Synthetic experiments demonstrate that this score-based framework can handle occlusion boundaries: unlike classical methods that average over bifurcating temporal trajectories, it chooses among likely trajectories, selecting more probable options with higher frequency. Furthermore, analysis of networks trained on natural image sequences reveals that the representation automatically weights predictive evidence by its reliability, which is a hallmark of statistical inference.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13131
Loading