A Hierarchical Bayesian Model for Few-Shot Meta Learning

Published: 16 Jan 2024, Last Modified: 07 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Bayesian models, Meta learning, Few-shot learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A novel hierarchical Bayesian model for the few-shot meta learning problem, with the efficient one-time episodic learning algorithm that can scale up to modern architectures (eg, ViT).
Abstract: We propose a novel hierarchical Bayesian model for the few-shot meta learning problem. We consider episode-wise random variables to model episode-specific generative processes, where these local random variables are governed by a higher-level global random variable. The global variable captures information shared across episodes, while controlling how much the model needs to be adapted to new episodes in a principled Bayesian manner. Within our framework, prediction on a novel episode/task can be seen as a Bayesian inference problem. For tractable training, we need to be able to relate each local episode-specific solution to the global higher-level parameters. We propose a Normal-Inverse-Wishart model, for which establishing this local-global relationship becomes feasible due to the approximate closed-form solutions for the local posterior distributions. The resulting algorithm is more attractive than the MAML in that it does not maintain a costly computational graph for the sequence of gradient descent steps in an episode. Our approach is also different from existing Bayesian meta learning methods in that rather than modeling a single random variable for all episodes, it leverages a hierarchical structure that exploits the local-global relationships desirable for principled Bayesian learning with many related tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Submission Number: 1947
Loading