Continual Reinforcement Learning by Planning with Online World Models

Published: 01 May 2025, Last Modified: 18 Jun 2025ICML 2025 spotlightposterEveryoneRevisionsBibTeXCC BY 4.0
TL;DR: we learn the world model online and plan with the model to achieve continual reinforcement learning
Abstract: Continual reinforcement learning (CRL) refers to a naturalistic setting where an agent needs to endlessly evolve, by trial and error, to solve multiple tasks that are presented sequentially. One of the largest obstacles to CRL is that the agent may forget how to solve previous tasks when learning a new task, known as catastrophic forgetting. In this paper, we propose to address this challenge by planning with online world models. Specifically, we learn a Follow-The-Leader shallow model online to capture the world dynamics, in which we plan using model predictive control to solve a set of tasks specified by any reward functions. The online world model is immune to forgetting by construction with a proven regret bound of $\mathcal{O}(\sqrt{K^2D\log(T)})$ under mild assumptions. The planner searches actions solely based on the latest online model, thus forming a FTL Online Agent (OA) that updates incrementally. To assess OA, we further design Continual Bench, a dedicated environment for CRL, and compare with several strong baselines under the same model-planning algorithmic framework. The empirical results show that OA learns continuously to solve new tasks while not forgetting old skills, outperforming agents built on deep world models with various continual learning techniques.
Lay Summary: (1) Make AI agents learn from experience online is a promising path towards AGI. (2) We attempt to build online world models incrementally and use them to simulate the future events, so that the agent can make informed decisions.
Primary Area: Reinforcement Learning
Keywords: model-based rl, continual rl, online learning, incremental learning, catastrophic forgetting
Submission Number: 9229
Loading