A CMDP-within-online framework for Meta-Safe Reinforcement LearningDownload PDF


22 Sept 2022, 12:36 (modified: 19 Nov 2022, 00:46)ICLR 2023 Conference Blind SubmissionReaders: Everyone
Keywords: Meta-Reinforcement learning, Constrained MDPs, online learning, safe RL, dynamic regret
TL;DR: We study the problem of meta-reinforcement learning (meta-RL) for constrained Markov decision processes (CMDPs) through the inexact CMDP-within-online framework.
Abstract: Meta-reinforcement learning has widely been used as a learning-to-learn framework to solve unseen tasks with limited experience. However, the aspect of constraint violations has not been adequately addressed in the existing works, making their application restricted in real-world settings. In this paper, we study the problem of meta-safe reinforcement learning (meta-SRL) through the CMDP-within-online framework. We obtain task-averaged regret guarantees for the reward maximization (optimality gap) and constraint violations using gradient-based meta-learning and show that the task-averaged optimality gap and constraint satisfaction improve with task-similarity in the static environment, or task-relatedness in the changing environment. Several technical challenges arise when making this framework practical while still having strong theoretical guarantees. To address these challenges, we propose a meta-algorithm that performs inexact online learning on the upper bounds of intra-task optimality gap and constraint violations estimated by off-policy stationary distribution corrections. Furthermore, we enable the learning rates to be adapted for every task and extend our approach to settings with the dynamically changing task environments. Finally, experiments are conducted to demonstrate the effectiveness of our approach. The proposed theoretical framework is the first to handle the nonconvexity and stochastic nature of within-task CMDPs, while exploiting inter-task dependency for multi-task safe learning.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
38 Replies