Keywords: EF21, error feedback, bidirectional compression, regularization, variance reduction, heavy ball momentum, stochastic approximation
Abstract: First proposed by Seide et al (2014) as a heuristic, error feedback (EF) is a very popular mechanism for enforcing convergence of distributed gradient-based optimization methods enhanced with communication compression strategies based on the application of contractive compression operators. However, existing theory of EF relies on very strong assumptions (e.g., bounded gradients), and provides pessimistic convergence rates (e.g., while the best known rate for EF in the smooth nonconvex regime, and when full gradients are compressed, is $O(1/T^{2/3})$, the rate of gradient descent in the same regime is $O(1/T)$). Recently, Richt\'{a}rik et al (2021) proposed a new error feedback mechanism, EF21, based on the construction of a Markov compressor induced by a contractive compressor. EF21 removes the aforementioned theoretical deficiencies of EF and at the same time works better in practice. In this work we propose six practical extensions of EF21: partial participation, stochastic approximation, variance reduction, proximal setting, momentum and bidirectional compression. Our extensions are supported by strong convergence theory in the smooth nonconvex and also Polyak-Łojasiewicz regimes. Several of these techniques were never analyzed in conjunction with EF before, and in cases where they were (e.g., bidirectional compression), our rates are vastly superior.
Supplementary Material: zip
13 Replies
Loading