Keywords: Bayesian Active Learning, Real-World Datasets, Batch Acquisition, Budget Constraints
TL;DR: We introduce two Bayesian active learning strategies for batch acquisition under constraints and show that they can reduce the number of active learning iterations and costs required in real-world settings.
Abstract: Varying annotation costs among data points and budget constraints can hinder the adoption of active learning strategies in real-world applications. This work introduces two Bayesian active learning strategies for batch acquisition under constraints (ConBatch-BAL), one based on dynamic thresholding and one following greedy acquisition. Both select samples using uncertainty metrics computed via Bayesian neural networks. The dynamic thresholding strategy redistributes the budget across the batch, while the greedy one selects the top-ranked sample at each step, limited by the remaining budget. Focusing on scenarios with costly data annotation and geospatial constraints, we also release two new real-world datasets containing geolocated aerial images of buildings, annotated with energy efficiency or typology classes. The ConBatch-BAL strategies are benchmarked against a random acquisition baseline on these datasets under various budget and cost scenarios. The results show that the developed ConBatch-BAL strategies can reduce active learning iterations and data acquisition costs in real-world settings, and even outperform the unconstrained baseline solutions.
Supplementary Material: zip
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4980
Loading