CTSR: Controllable Fidelity-Realness Trade-off Distillation for Real-World Image Super Resolution

08 Sept 2025 (modified: 14 Nov 2025)ICLR 2026 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Image Super-resolution, Diffusion Model
Abstract: Real-world image super-resolution is a critical image processing task, where two key evaluation criteria are the fidelity to the original image and the visual realness of the generated results. Although existing methods based on diffusion models excel in visual realness by leveraging strong priors, they often struggle to achieve an effective balance between fidelity and realness. In our preliminary experiments, we observe that a linear combination of multiple models outperforms individual models, motivating us to harness the strengths of different models for a more effective trade-off. Based on this insight, we propose a distillation-based approach that leverages the geometric decomposition of both fidelity and realness, alongside the performance advantages of multiple teacher models, to strike a more balanced trade-off. Furthermore, we explore the controllability of this trade-off, enabling a flexible and adjustable super-resolution process, which we call CTSR (Controllable Trade-off Super-Resolution). Experiments conducted on several real-world image super-resolution benchmarks demonstrate that our method surpasses existing state-of-the-art approaches, achieving superior performance across both fidelity and realness metrics.
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 2897
Loading