CodeBrain: Towards Decoupled Interpretability and Multi-Scale Architecture for EEG Foundation Model

ICLR 2026 Conference Submission338 Authors

01 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: EEG foundation model, Vector Quantization, State Space Model
Abstract: Electroencephalography (EEG) provides real-time insights into brain activity and supports diverse applications in neuroscience. While EEG foundation models (EFMs) have emerged to address the scalability issues of task-specific models, current approaches still yield clinically uninterpretable and weakly discriminative representations, inefficiently capture global dependencies, and neglect important local neural events. We present CodeBrain, a two-stage EFM designed to fill this gap. In the first stage, we introduce the TFDual-Tokenizer, which decouples heterogeneous temporal and frequency EEG signals into discrete tokens, quadratically expanding the representation space to enhance discriminative power and offering domain-specific interpretability by suggesting potential links to neural events and spectral rhythms. In the second stage, we propose the multi-scale EEGSSM architecture, which combines structured global convolution with sliding window attention to efficiently capture both sparse long-range and local dependencies, reflecting the brain’s small-world topology. Pretrained on the largest public EEG corpus, CodeBrain achieves strong generalization across 8 downstream tasks and 10 datasets under distribution shifts, supported by comprehensive ablations, scaling-law analyses, and interpretability evaluations.
Primary Area: applications to neuroscience & cognitive science
Submission Number: 338
Loading