Atomas: Hierarchical Adaptive Alignment on Molecule-Text for Unified Molecule Understanding and Generation

Published: 22 Jan 2025, Last Modified: 03 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Cross-modal representation learning, Molecule-text understanding, Alignment
TL;DR: We propose a novel framework that improves drug design by effectively integrating molecular and textual information through cross-modal representation learning.
Abstract: Molecule-and-text cross-modal representation learning has emerged as a promising direction for enhancing the quality of molecular representation, thereby improving performance in various scientific fields. However, most approaches employ a global alignment approach to learn the knowledge from different modalities that may fail to capture fine-grained information, such as molecule-and-text fragments and stereoisomeric nuances, which is crucial for downstream tasks. Furthermore, it is incapable of modeling such information using a similar global alignment strategy due to the lack of annotations about the fine-grained fragments in the existing dataset. In this paper, we propose Atomas, a hierarchical molecular representation learning framework that jointly learns representations from SMILES strings and text. We design a Hierarchical Adaptive Alignment model to automatically learn the fine-grained fragment correspondence between two modalities and align these representations at three semantic levels. Atomas's end-to-end training framework supports understanding and generating molecules, enabling a wider range of downstream tasks. Atomas achieves superior performance across 12 tasks on 11 datasets, outperforming 11 baseline models thus highlighting the effectiveness and versatility of our method. Scaling experiments further demonstrate Atomas’s robustness and scalability. Moreover, visualization and qualitative analysis, validated by human experts, confirm the chemical relevance of our approach. Codes are released on ~\url{https://github.com/yikunpku/Atomas}.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9785
Loading