Transformers Provably Solve Parity Efficiently with Chain of Thought

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: transformers, chain of thought, parity, self-consistency
Abstract: This work provides the first theoretical analysis of training transformers to solve complex problems by recursively generating intermediate states, analogous to fine-tuning for chain-of-thought (CoT) reasoning. We consider training a one-layer transformer to solve the fundamental $k$-parity problem, extending the work on RNNs by \citet{Wies23}. We establish three key results: (1) any finite-precision gradient-based algorithm, without intermediate supervision, requires substantial iterations to solve parity with finite samples. (2) In contrast, when intermediate parities are incorporated into the loss function, our model can learn parity in one gradient update when aided by \emph{teacher forcing}, where ground-truth labels of the reasoning chain are provided at each generation step. (3) Even without teacher forcing, where the model must generate CoT chains end-to-end, parity can be learned efficiently if augmented data is employed to internally verify the soundness of intermediate steps. Our findings, supported by numerical experiments, show that task decomposition and stepwise reasoning naturally arise from optimizing transformers with CoT; moreover, self-consistency checking can improve multi-step reasoning ability, aligning with empirical studies of CoT.
Supplementary Material: zip
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10210
Loading