Provable Model-Parallel Distributed Principal Component Analysis with Parallel Deflation

Published: 11 Feb 2025, Last Modified: 06 Mar 2025CPAL 2025 (Proceedings Track) PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Principal Component Analysis, Distributed Learning
Abstract: We study a distributed Principal Component Analysis (PCA) framework where each worker targets a distinct eigenvector and refines its solution by updating from intermediate solutions provided by peers deemed as "superior". Drawing intuition from the deflation method in centralized eigenvalue problems, our approach breaks the sequential dependency in the deflation steps and allows asynchronous updates of workers, while incurring only a small communication cost. To our knowledge, a gap in the literature -- *the theoretical underpinning of such distributed, dynamic interactions among workers* -- has remained unaddressed. This paper offers a theoretical analysis explaining why, how, and when these intermediate, hierarchical updates lead to practical and provable convergence in distributed environments. Despite being a theoretical work, our prototype implementation demonstrates that such a distributed PCA algorithm converges effectively and in scalable way: through experiments, our proposed framework offers comparable performance to EigenGame-$\mu$, the state-of-the-art model-parallel PCA solver.
Submission Number: 38
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview