Keywords: GNNs, linear programming, data augmentation
TL;DR: We provide principled data augmentations for learning to optimize.
Abstract: Linear and quadratic optimization are crucial in numerous real-world applications, ranging from training machine learning models to solving integer linear programs. Recently, learning-to-optimize methods (L2O) for linear (LPs) or quadratic programs (QPs) using message-passing graph neural networks (MPNNs) have gained traction, promising lightweight, data-driven proxies for solving such optimization problems. For example, they replace the costly computation of strong branching scores in branch-and-bound solvers, thereby reducing the need to solve many such optimization problems. However, robust L2O MPNNs remain challenging in data-scarce settings, especially when addressing complex optimization problems such as QPs. This work introduces a principled approach to data augmentation tailored for QPs via MPNNs. Our method leverages theoretically justified data augmentation techniques to generate diverse yet optimality-preserving instances. Furthermore, we integrate these augmentations into a self-supervised contrastive learning framework, thereby pretraining MPNNs for improved performance on L2O tasks. Extensive experiments demonstrate that our approach improves generalization in supervised scenarios and facilitates effective transfer learning to related optimization problems.
Supplementary Material: gz
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 4777
Loading