Trapped by simplicity: When Transformers fail to learn from noisy features

ICLR 2026 Conference Submission21167 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: boolean analysis, simplicity bias, transformer, feature noise
Abstract: Noise is ubiquitous in data used to train large language models, but it is not well understood whether these models are able to correctly generalize to inputs generated without noise. Here, we study noise-robust learning: are transformers trained on data with noisy features able to find a target function that correctly predicts labels for noiseless features? We show that transformers succeed at noise-robust learning for a selection of $k$-sparse parity and majority functions, compared to LSTMs which fail at this task for even modest feature noise. However, we find that transformers typically fail at noise-robust learning of random $k$-juntas, especially when the boolean sensitivity of the optimal solution is smaller than that of the target function. We argue that this failure is due to a combination of two factors: transformers' bias toward simpler functions, combined with an observation that the empirically optimal function for noise-robust learning has lower sensitivity than the target function. We test this hypothesis by exploiting transformers' simplicity bias to trap them in an incorrect solution, but show that transformers can escape this trap by training with an additional loss term penalizing high-sensitivity solutions. Overall, we find that transformers are particularly ineffective for learning boolean functions in the presence of feature noise.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Submission Number: 21167
Loading