Recover-to-Forget: Gradient Reconstruction from LoRA for Efficient LLM Unlearning

Published: 08 Nov 2025, Last Modified: 08 Nov 2025ResponsibleFM @ NeurIPS 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, Machine Unlearning, Gradient Reconstruction, LoRA, Knowledge Removal, Model Editing
TL;DR: We propose Recover-to-Forget, a method for efficient LLM unlearning by reconstructing full-model gradients from low-rank LoRA updates using a proxy-trained decoder.
Abstract: Unlearning in large language models (LLMs) is essential for enabling dynamic knowledge updates, enforcing data deletion rights, and correcting model behavior. However, existing unlearning methods often require full-model fine-tuning or access to the original training data, which limits their scalability and practicality. In this work, we introduce Recover-to-Forget (R2F), a novel framework for efficient unlearning in LLMs based on reconstructing full-model gradient directions from low-rank LoRA adapter updates. Rather than performing backpropagation through the full model, we compute gradients with respect to LoRA parameters using multiple paraphrased prompts and train a gradient decoder to approximate the corresponding full-model gradients. To ensure applicability to larger or black-box models, the decoder is trained on a proxy model and transferred to target models. We provide a theoretical analysis of cross-model generalization and demonstrate that our method achieves effective unlearning while preserving general model performance. Experimental results demonstrate that R2F offers a scalable and lightweight alternative for unlearning in pretrained LLMs without requiring full retraining or access to internal parameters.
Submission Number: 27
Loading