Keywords: LLM, Quantization, PTQ, LoRA, Error Reconstruction
TL;DR: We propose SERQ, a saliency-aware error reconstruction method for low-bit (W4A4) LLM inference that employs only a single low-rank compensation matrix by jointly addressing activation- and weight-induced quantization errors.
Abstract: Post-training quantization (PTQ) has emerged as a prevailing technique for deploying large language models (LLMs) efficiently in terms of both memory and computation, across edge devices and server platforms. Existing PTQ methods primarily aim to reduce precision in weights and activations by mitigating quantization errors caused by channel-wise outlier activations (e.g., pre-quantization scaling, online transformations, or low-rank error reconstruction). Among these approaches, error reconstruction with low-rank adaptation (LoRA) has proven particularly effective, as it introduces a lightweight auxiliary computation path without requiring heavy optimization or additional online layers. However, prior studies reveal severe accuracy degradation under W4A4 settings, and conventional low-rank adaptations rely on two sequential factors, necessitating intermediate quantization during inference and thereby limiting low-precision efficiency. In this work, we propose SERQ, a saliency-aware error reconstruction method for low-bit LLM inference that employs a single low-rank compensation matrix. SERQ preserves efficient 4-bit matrix multiplication in linear layers by jointly mitigating quantization errors arising from both activation and weight saliency through three stages: (1) static activation flattening, (2) saliency-aware error reconstruction, and (3) offline weight permutation. The method incurs additional computation only for low-rank error reconstruction via a single decomposition, while all other operations are performed offline, thereby keeping latency overhead minimal. Empirically, SERQ outperforms prior error reconstruction methods under both W4A8 and W4A4 settings, and achieves higher accuracy than state-of-the-art rotation-based W4A4 approaches, while substantially reducing calibration complexity.
Supplementary Material: zip
Primary Area: infrastructure, software libraries, hardware, systems, etc.
Submission Number: 17113
Loading