STNAGNN: Data-driven Spatio-temporal Brain Connectivity beyond FC

Published: 27 Mar 2025, Last Modified: 11 May 2025MIDL 2025 OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Graph Neural Network, Functional MRI, Spatio-temporal learning
TL;DR: A Task-aware spatio-temporal GNN architecture for fMRI analysis
Abstract: In recent years, graph neural networks (GNNs) have been widely applied in the analysis of brain fMRI, yet defining the connectivity between ROIs remains a challenge in noisy fMRI data. Among all approaches, Functional Connectome (FC) is the most popular method. Computed by the correlation coefficients between ROI time series, FC is a powerful and computationally efficient way to estimate ROI connectivity. However, it is well known for neglecting structural connections and causality in ROI interactions. Also, FC becomes much more noisy in the short spatio-temporal sliding-window subsequences of fMRI. Effective Connectome (EC) is proposed as a directional alternative, but it is difficult to accurately estimate. Furthermore, for optimal GNN performance, usually only a small percentage of the strongest connections are selected as sparse edges, resulting in oversimplification of complex brain connections. To tackle these challenges, we propose the Spatio-Temporal Node Attention Graph Neural Network (STNAGNN) as a data-driven alternative that combines sparse predefined FC with dense data-driven spatio-temporal connections, allowing for flexible and spatio-temporal learning of ROI interaction patterns.
Primary Subject Area: Detection and Diagnosis
Secondary Subject Area: Interpretability and Explainable AI
Paper Type: Methodological Development
Registration Requirement: Yes
Reproducibility: https://github.com/Jiyao96/STNAGNN-fMRI/
Midl Latex Submission Checklist: Ensure no LaTeX errors during compilation., Created a single midl25_NNN.zip file with midl25_NNN.tex, midl25_NNN.bib, all necessary figures and files., Includes \documentclass{midl}, \jmlryear{2025}, \jmlrworkshop, \jmlrvolume, \editors, and correct \bibliography command., Did not override options of the hyperref package, Did not use the times package., Author and institution details are de-anonymized where needed. All author names, affiliations, and paper title are correctly spelled and capitalized in the biography section., References must use the .bib file. Did not override the bibliographystyle defined in midl.cls. Did not use \begin{thebibliography} directly to insert references., Tables and figures do not overflow margins; avoid using \scalebox; used \resizebox when needed., Included all necessary figures and removed *unused* files in the zip archive., Removed special formatting, visual annotations, and highlights used during rebuttal., All special characters in the paper and .bib file use LaTeX commands (e.g., \'e for é)., Appendices and supplementary material are included in the same PDF after references., Main paper does not exceed 9 pages; acknowledgements, references, and appendix start on page 10 or later.
Latex Code: zip
Copyright Form: pdf
Submission Number: 29
Loading