Your Pretrained Model Tells the Difficulty Itself: A Self-Adaptive Curriculum Learning Paradigm for Natural Language Understanding

Published: 22 Jun 2025, Last Modified: 22 Jun 2025ACL-SRW 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: curriculum learning, difficulty estimation, fine-tuning, language models, natural language understanding
TL;DR: We propose a self-adaptive curriculum learning paradigm that uses pretrained language models to estimate sample difficulty and guide fine-tuning via novel sampling strategies.
Abstract: Curriculum learning is a widely adopted training strategy in natural language processing (NLP), where models are exposed to examples organized by increasing difficulty to enhance learning efficiency and performance. However, most existing approaches rely on manually defined difficulty metrics -- such as text length -- which may not accurately reflect the model’s own perspective. To overcome this limitation, we present a self-adaptive curriculum learning paradigm that prioritizes fine-tuning examples based on difficulty scores predicted by pre-trained language models (PLMs) themselves. Building on these scores, we explore various training strategies that differ in the ordering of examples for the fine-tuning: from easy-to-hard, hard-to-easy, to mixed sampling. We evaluate our method on four natural language understanding (NLU) datasets covering both binary and multi-class classification tasks. Experimental results show that our approach leads to faster convergence and improved performance compared to standard random sampling.
Submission Number: 56
Loading