Exact Mean Square Linear Stability Analysis for SGD

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Linear stability, Dynamical systems, SGD, Mean square stability
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We provide an explicit condition on the step size that is both necessary and sufficient for the stability of SGD in the mean square sense
Abstract: The dynamical stability of optimization methods at the vicinity of minima of the loss has recently attracted significant attention. For gradient descent (GD), stable convergence is possible only to minima that are sufficiently flat w.r.t. the step size, and those have been linked with favorable properties of the trained model. However, while the stability threshold of GD is well-known, to date, no explicit expression has been derived for the exact threshold of stochastic GD (SGD). In this paper, we derive such a closed-form expression. Specifically, we provide an explicit condition on the step size that is both necessary and sufficient for the stability of SGD in the mean square sense. Our analysis sheds light on the precise role of the batch size $B$. Particularly, we show that the stability threshold is a monotonically non-decreasing function of the batch size, which means that reducing the batch size can only decrease stability. Furthermore, we show that SGD's stability threshold is equivalent to that of a process which takes in each iteration a full batch gradient step w.p. $1-p$, and a single sample gradient step w.p. $p$, where $p \approx 1/B $. This indicates that even with moderate batch sizes, SGD's stability threshold is very close to that of GD's. Finally, we prove simple necessary conditions for stability, which depend on the batch size, and are easier to compute than the precise threshold. We demonstrate our theoretical findings through experiments on the MNIST dataset.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4947
Loading