Abstract: Humanitarian Mine Action has generated extensive best-practice knowledge, but much remains locked in unstructured reports. We introduce TextMine, an ontology-guided pipeline that uses Large Language Models to extract knowledge triples from HMA texts. TextMine integrates document chunking, domain-aware prompting, triple extraction, and both reference-based and LLM-as-a-Judge evaluation. We also create the first HMA ontology and a curated dataset of real-world demining reports. Experiments show ontology-aligned prompts boost extraction accuracy by 44.2%, cut hallucinations by 22.5%, and improve format conformance by 20.9% over baselines. While validated on Cambodian reports, TextMine can adapt to global demining efforts or other domains, transforming unstructured data into structured knowledge.
Paper Type: Long
Research Area: NLP Applications
Research Area Keywords: NLP for social good
Contribution Types: NLP engineering experiment, Data resources
Languages Studied: English
Submission Number: 648
Loading