Keywords: knowledge graph, pretrained language models
TL;DR: In this work, we aim at harvesting symbolic KGs from the LMs, and propose a new framework for automatic KG construction empowered by the neural LMs' flexibility and scalability.
Abstract: Symbolic knowledge graphs (KGs) have been constructed either by expensive human crowdsourcing or with complex text mining pipelines. The emerging large pretrained language models (LMs), such as BERT, have shown to implicitly encode massive knowledge which can be queried with properly designed prompts. However, compared to the explicit KGs, the implict knowledge in the black-box LMs
is often difficult to access or edit and lacks explainability. In this work, we aim at harvesting symbolic KGs from the LMs, and propose a new framework for automatic KG construction empowered by the neural LMs’ flexibility and scalability. Compared to prior works that often rely on large human annotated data or existing massive KGs, our approach requires only the minimal definition of relations as inputs, and hence is suitable for extracting knowledge of rich new relations that are instantly assigned and not available before. The framework automatically generates diverse prompts, and performs efficient knowledge search within a given LM for consistent outputs. The knowledge harvested with our approach shows competitive quality, diversity, and novelty. As a result, we derive from diverse LMs a family of new KGs (e.g., BERTNET and ROBERTANET) that contain a richer set of relations, including some complex ones (e.g., "A is capable of but not good at B") that cannot be extracted with previous methods. Besides, the resulting KGs also serve as a vehicle to interpret the respective source LMs, leading to new insights into the varying knowledge capability of different LMs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 3 code implementations](https://www.catalyzex.com/paper/bertnet-harvesting-knowledge-graphs-from/code)
9 Replies
Loading