Does Object Grounding Really Reduce Hallucination of Large Vision-Language Models?

ACL ARR 2024 June Submission1188 Authors

14 Jun 2024 (modified: 02 Jul 2024)ACL ARR 2024 June SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large vision-language models (LVLMs) have recently dramatically pushed the state of the art in image captioning and many image understanding tasks (e.g., visual question answering). LVLMs, however, often \textit{hallucinate} and produce captions that mention concepts that cannot be found in the image. These hallucinations erode the trustworthiness of LVLMs and are arguably among the main obstacles to their ubiquitous adoption. Recent work suggests that addition of grounding objectives---those that explicitly align image regions or objects to text spans---reduces the amount of LVLM hallucination. Although intuitive, this claim is not empirically justified as the reduction effects have been established, we argue, with flawed evaluation protocols that (i) rely on data (i.e., MSCOCO) that has been extensively used in LVLM training and (ii) measure hallucination via question answering rather than open-ended caption generation. In this work, in contrast, we offer the first systematic analysis of the effect of fine-grained object grounding on LVLM hallucination under an evaluation protocol that more realistically captures LVLM hallucination in open generation. Our extensive experiments over three backbone LLMs reveal that grounding objectives have little to no effect on object hallucination in open caption generation.
Paper Type: Long
Research Area: Multimodality and Language Grounding to Vision, Robotics and Beyond
Research Area Keywords: cross-modal pretraining,cross-modal content generation
Contribution Types: Model analysis & interpretability, NLP engineering experiment
Languages Studied: English
Submission Number: 1188
Loading