Keywords: continual learning, vision-language model, video understanding, multimodal large language model
Abstract: Frontier vision-language models (VLMs) have made remarkable improvements in video understanding tasks. However, real-world videos typically exist as continuously evolving data streams (e.g., dynamic scenes captured by wearable glasses), necessitating models to continually adapt to shifting data distributions and novel scenarios. Considering the prohibitive computational costs of fine-tuning models on new tasks, usually, a small subset of parameters is updated while the bulk of the model remains frozen. This poses new challenges to existing continual learning frameworks in the context of large multimodal foundation models, i.e., catastrophic forgetting and update conflict. While the foundation models struggle with parameter-efficient continual learning, the hippocampus in the human brain has evolved highly efficient mechanisms for memory formation and consolidation. Inspired by the rapid **Bi**nding and pattern **se**paration mechanisms in the hippocampus, in this work, we propose **Bisecle** for video-language **c**ontinual **le**arning, where a multi-directional supervision module is used to capture more cross-modal relationships and a contrastive prompt learning scheme is designed to isolate task-specific knowledge to facilitate efficient memory storage. Binding and separation processes further strengthen the ability of VLMs to retain complex experiences, enabling robust and efficient continual learning in video understanding tasks. We perform a thorough evaluation of the proposed Bisecle, demonstrating its ability to mitigate forgetting and enhance cross-task generalization on several VideoQA benchmarks.
Primary Area: General machine learning (supervised, unsupervised, online, active, etc.)
Submission Number: 9026
Loading