Exploring Iterative Controllable Summarization with Large Language Models

ACL ARR 2025 May Submission1357 Authors

17 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large language models (LLMs) have demonstrated remarkable performance in abstractive summarization tasks. However, their ability to precisely control summary attributes (e.g., length or topic) remains underexplored, limiting their adaptability to specific user preferences. In this paper, we systematically explore the controllability of LLMs. To this end, we revisit summary attribute measurements and introduce iterative evaluation metrics, failure rate and average iteration count, to more precisely evaluate controllability beyond assessment of errors. Our findings show that LLMs struggle more with numerical attributes than with linguistic attributes. To address this challenge, we propose a guide-to-explain framework (GTE) for controllable summarization. GTE enables the model to identify misaligned attributes in the initial draft and guides it to self-explain errors in the previous output. By encouraging reflection on attribute misalignment, GTE generates well-adjusted summaries that satisfy the desired attributes with robust effectiveness while requiring surprisingly fewer iterations than other iterative approaches.
Paper Type: Long
Research Area: Summarization
Research Area Keywords: abstractive summarization, query-focused summarization
Contribution Types: NLP engineering experiment, Data analysis, Surveys
Languages Studied: English
Submission Number: 1357
Loading