Keywords: ai safety, ai control, large language models, trusted monitoring, chain-of-thought, reasoning, natural language processing
Abstract: As AI models are deployed with increasing autonomy, it is important to ensure they do not take harmful actions unnoticed. As a potential mitigation, we investigate Chain-of-Thought (CoT) monitoring, wherein a weaker trusted monitor model continuously oversees the intermediate reasoning steps of a more powerful but untrusted model. We compare CoT monitoring to action-only monitoring, where only final outputs are reviewed, in a red-teaming setup where the untrusted model is instructed to pursue harmful side tasks while completing a coding problem. We find that while CoT monitoring is more effective than overseeing only model outputs in scenarios where action-only monitoring fails to reliably identify sabotage, reasoning traces can contain misleading rationalizations that deceive the CoT monitors, reducing performance in obvious sabotage cases. To address this, we introduce a hybrid protocol that independently scores model reasoning and actions, and combines them using a weighted average. Our hybrid monitor consistently outperforms both CoT and action-only monitors across all tested models and tasks, with detection rates twice higher than action-only monitoring for subtle deception scenarios.
Supplementary Material: zip
Primary Area: Social and economic aspects of machine learning (e.g., fairness, interpretability, human-AI interaction, privacy, safety, strategic behavior)
Submission Number: 22318
Loading