Stochastic No-regret Learning for General Games with Variance ReductionDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: game theory
Abstract: We show that a stochastic version of optimistic mirror descent (OMD), a variant of mirror descent with recency bias, converges fast in general games. More specifically, with our algorithm, the individual regret of each player vanishes at a speed of $O(1/T^{3/4})$ and the sum of all players' regret vanishes at a speed of $O(1/T)$, which is an improvement upon the $O(1/\sqrt{T})$ convergence rate of prior stochastic algorithms, where $T$ is the number of interaction rounds. Due to the advantage of stochastic methods in the computational cost, we significantly improve the time complexity over the deterministic algorithms to approximate coarse correlated equilibrium. To achieve lower time complexity, we equip the stochastic version of OMD in \cite{alacaoglu2021stochastic} with a novel low-variance Monte-Carlo estimator. Our algorithm extends previous works \cite{alacaoglu2021stochastic,carmon2019variance} from two-player zero-sum games to general games.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
12 Replies