Keywords: Dataset distillation, Data condensation, Synthetic data generation, Data-efficient learning
TL;DR: Informative soft labels is the key behind the success of dataset distillation methods.
Abstract: Data *quality* is a crucial factor in the performance of machine learning models, a principle that dataset distillation methods exploit by compressing training datasets into much smaller counterparts that maintain similar downstream performance. Understanding how and why data distillation methods work is vital not only for improving these methods but also for revealing fundamental characteristics of "good” training data. However, a major challenge in achieving this goal is the observation that distillation approaches, which rely on sophisticated but mostly disparate methods to generate synthetic data, have little in common with each other. In this work, we highlight a largely overlooked aspect common to most of these methods: the use of soft (probabilistic) labels. Through a series of ablation experiments, we study the role of soft labels in depth. Our results reveal that the main factor explaining the performance of state-of-the-art distillation methods is not the specific techniques used to generate synthetic data but rather the use of soft labels. Furthermore, we demonstrate that not all soft labels are created equal; they must contain *structured information* to be beneficial. We also provide empirical scaling laws that characterize the effectiveness of soft labels as a function of images-per-class in the distilled dataset and establish an empirical Pareto frontier for data-efficient learning. Combined, our findings challenge conventional wisdom in dataset distillation, underscore the importance of soft labels in learning, and suggest new directions for improving distillation methods. Code for all experiments is available at https://github.com/sunnytqin/no-distillation.
Supplementary Material: zip
Primary Area: Machine vision
Submission Number: 18440
Loading